2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state

Zepeng Zhang, Tianpeng Zhang, Yuanlong Ge, Mengfan Tang, Wenbin Ma, Qinfen Zhang, Shengzhao Gong, Woodring E Wright, Jerry Shay, Haiying Liu, Yong Zhao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Linear chromosome ends are capped by telomeres that have been previously reported to adopt a t-loop structure. The lack of simple methods for detecting t-loops has hindered progress in understanding the dynamics of t-loop formation and its function in protecting chromosome ends. Here, we employed a classical two-dimensional agarose gel method (2D gel method) to innovatively apply to t-loop detection. Briefly, restriction fragments of genomic DNA were separated in a 2D gel, and the telomere sequence was detected by in-gel hybridization with telomeric probe. Using this method, we found that t-loops are present throughout the cell cycle, and t-loop formation tightly couples to telomere replication. We also observed that t-loop abundance positively correlates with chromatin condensation, i.e. cells with less compact telomeric chromatin (ALT cells and trichostatin A (TSA)-treated HeLa cells) exhibited fewer t-loops. Moreover, we observed that telomere dysfunction-induced foci, ALT-associated promyelocytic leukemia bodies, and telomere sister chromatid exchanges are activated upon TSAinduced loss of t-loops. These findings confirm the importance of the t-loop in protecting linear chromosomes from damage or illegitimate recombination.

Original languageEnglish (US)
Pages (from-to)6645-6656
Number of pages12
JournalJournal of Biological Chemistry
Volume294
Issue number16
DOIs
StatePublished - Apr 19 2019

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of '2D gel electrophoresis reveals dynamics of t-loop formation during the cell cycle and t-loop in maintenance regulated by heterochromatin state'. Together they form a unique fingerprint.

Cite this